EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation

نویسندگان

  • Suwicha Jirayucharoensak
  • Setha Pan-Ngum
  • Pasin Israsena
چکیده

Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

Machine Learning for Medical Applications

Machine learning (ML) has been well recognized as an effective tool for researchers to handle the problems in signal and image processing.Machine learning is capable of offering automatic learning techniques to excerpt common patterns from empirical data and then make sophisticated decisions, based on the learned behaviors. Medicine has a large dimensionality of data and the medical application...

متن کامل

Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network

Estimation of human emotions from Electroencephalogram (EEG) signals plays a vital role in developing robust Brain-Computer Interface (BCI) systems. In our research, we used Deep Neural Network (DNN) to address EEG-based emotion recognition. This was motivated by the recent advances in accuracy and efficiency from applying deep learning techniques in pattern recognition and classification appli...

متن کامل

EEG Based Emotion Identification Using Unsupervised Deep Feature Learning

Capturing user’s emotional state is an emerging way for implicit relevance feedback in information retrieval (IR). Recently, EEGbased emotion recognition has drawn increasing attention. However, a key challenge is effective learning of useful features from EEG signals. In this paper, we present our on-going work on using Deep Belief Network (DBN) to automatically extract highlevel features from...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014